<u>Creanic</u> LETTERS

Rh₂(II)-Catalyzed Ester Migration to Afford 3*H*-Indoles from Trisubstituted Styryl Azides

Chen Kong and Tom G. Driver*

Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, Illinois 60607, United States

Supporting Information

ABSTRACT: Rh₂(II)-Complexes trigger the formation of 3*H*indoles from *ortho*-alkenyl substituted aryl azides. This reaction occurs through a 4π -electron-5-atom electrocyclization of the rhodium *N*-aryl nitrene followed by a [1,2]-migration to afford only 3*H*-indoles. The selectivity of the migration is dependent on the identity of the β -styryl substituent.

he wide-ranging potency of bioactive N-heterocycles continues to inspire the development of new synthetic transformations that simplify access to their complex and diverse structural motifs.^{1,2} In comparison to other *N*heterocycles, the antiproliferation activity of 3*H*-indoles has only recently been recognized.^{3,4} As a consequence, general methods for the construction of 3H-indoles-particularly nonoxygenated ones-has lagged despite their biological activity and potential value as synthetic intermediates.⁵⁻⁷ This structural motif can be formed using an interrupted Fischerindole reaction;⁸ however, this reaction is neither regio- nor stereoselective.^{8d} Densely functionalized carbocycles can be created using cyclization reactions to trigger structural rearrangements,9 and the use of the Nazarov reaction, in particular, has proved to be a successful strategy to access these carbocycles.¹⁰ Our previous investigations established that related tandem reactions can be initiated from ortho-substituted aryl azides:¹¹ the electrocyclization of **2** triggered [1,2] migration to form a 1,2,3-trisubstituted indole (4) (Scheme 1).^{Y1d} We anticipated that we might be able to transform

trisubstituted styryl azides **5** into 3*H*-indoles **6** by varying the identity of the β -substituent to change the regioselectivity of the [1,2] shift. Herein, we report that readily accessible β -carboxylate- and β -methoxy-substituted stryryl azides are efficiently converted to 3*H*-indoles and oxindoles using a rhodium(II) carboxylate catalyst.

To determine if our tandem process could yield 3*H*-indole products, the reactivity of aryl azide **9a** toward transition metal catalysts was investigated (Table 1). Aryl azide **9a** was chosen

T T	tion Bpin B CO ₂ Me Pd(OAc) ₂ (1 mol %) PPh ₃ (2 mol %) KOH, H ₂ O, PhMe	N ₃ 9a	conc CO ₂ Me	litions Me	eO ₂ C N 10a	
entry	catalyst	mol %	solvent	<i>t</i> (°C)	%, yield ^a	
1	none	-	PhMe	140	trace ^b	
2	FeBr ₂	10	PhMe	140	49	
3	CoTPP	10	PhMe	140	40	
4	$RuCl_3 \cdot nH_2O$	10	PhMe	140	33	
5	$[(cod)Ir(OMe)]_2$	5	PhMe	140	33	
6	$Rh_2(O_2CC_3F_7)_4$	5	PhMe	140	25	
7	$Rh_2(O_2CC_7H_{15})_4$	5	PhMe	140	64	
8	$Rh_2(esp)_2$	5	PhMe	140	78	
9	$Rh_2(esp)_2$	5	DME	140	72	
10	$Rh_2(esp)_2$	5	DCE	140	53	
11	$Rh_2(esp)_2$	5	PhMe	100	26	
^{<i>a</i>} As determined using ¹ H NMR spectroscopy using CH_2Br_2 as an internal standard. ^{<i>b</i>} Decomposition of 9a observed.						

to start our investigation because of its facile construction from 2-azidophenylboronate $7a^{12,13}$ and β -ketoester-derived vinyl triflate **8**.^{14,15} This azide proved to be remarkably robust: very little reaction occurred below 140 °C in the absence of transition metal complexes. At this temperature submission of **9a** to a series of Fe,¹⁶ Co,¹⁷ Ru,¹⁸ or Ir complexes¹⁹—all established N-atom transfer metal catalysts—did induce decomposition but only poor yields of *N*-heterocyclic products were observed (entries 2–5). In contrast, clean conversion was

Received:December 8, 2014Published:February 2, 2015

observed when **9a** was exposed to rhodium(II)-carboxylate complexes (entries 6–8). To our surprise, the 3*H*-indole product resulted from ester migration, a phenomenon not predicted by our migratorial aptitude scale.^{11b} While 3*H*-indole was observed with both perflourinated and alkyl carboxylate complexes, DuBois's tetradentate $Rh_2(esp)_2$ produced **10a** in the highest, most reproducible yield (entry 8),²⁰ which we attribute to the thermal robustness of this catalyst.²¹ A screen of different solvents revealed toluene to be the ideal reaction media: lower conversions were obtained in ethereal or chlorinated solvents (entries 8–10).²² Lowering the temperature also led to incomplete reactions (entry 11).

Using these optimized conditions,²³ the scope of our transformation was investigated by varying the identity of the aryl azide moiety (Table 2). Aryl azides bearing a range of

functional groups were efficiently transformed into 3*H*-indoles irrespective of the electronic nature of the R^1 - or R^2 -substituent. The success of 5-substituted aryl azides (entries 6–11) demonstrates that our transformation can generate 3*H*-indoles, which cannot be formed as single isomers using Fischer-indole or Fischer-indole-type reactions (entries 6–11).²⁴

The scope was further investigated by systematically varying the identity of the ortho-substituent of the aryl azide (Table 3). First, the o-cyclohexenyl group could be enlarged to cycloheptene or cyclooctene without attenuating the yield of 3Hindole (entries 1 and 2). Further, aryl azides containing O- or N-atoms in the o-heterocycle were efficiently converted to product (entries 3 and 4). The latter β -carboline is a ubiquitous structural motif in bioactive alkaloids,¹ and our method represents a novel approach to this important substructure. A cycloalkenyl o-substituent is not required in our tandem reaction: aryl azide 11e was smoothly converted into 3Hindole 12e (entry 5). Next, the identity of the migrating ester was modified (entries 6-9). We found that 3H-indoles could be produced using isopropyl, tert-butyl, or allyl esters. Unfortunately, the menthol ester 11i exhibited poor conversion and only modest diastereoselectivity (entry 9). The diastereoselectivity of our process was further probed by introducing substitution on the *o*-cyclohexenyl substituent (entries 10–14).

 Table 3. Effect of Changing the *o*-Alkenyl Substituent on 3H-Indole Formation

	N ₃	$\frac{\tilde{E}}{R^2} = \frac{Rh_2(esp)_2}{PhMe_1}$	(5 mol %) 140 °C	O E R ²
11				, only
entry	#	aryl azide	3H-indole	%, yield ^a
1 2	a b	N ₃ CO ₂ Me	(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,	84 (n = 2) 70 (n = 3)
3	с	CO2Me	MeO ₂ C N	87
4	d	N ^{Boc} N ₃	MeO ₂ C N-Boc	84
5	e	Me Me N ₃ CO ₂ Me	MeO ₂ C Me Me	76
6 7 8	f g h	CO ₂ R	RO ₂ C	66 (R = iPr) 57 (R = t-Bu) 59 (R = allyl)
9	i	N ₃ CO ₂ X _c	X _c O ₂ C	37 (dr 66:33)
10	j	Me N ₃ CO ₂ Me	MeO ₂ C, N Me	55 (dr 75:25)
п	k	€ N ₃ CO₂Me	MeO ₂ C	65 (dr 82:18)
12	1	KBu N ₃ CO₂t-Bu	t-BuO ₂ C	30 (dr 86:14)

^{*a*}Isolated yield of **12** after neutral alumina chromatography; only product obtained.

While only modest diastereoselectivity was observed with an allylic substituent (entry 10), an 82:18 ratio of diastereomers was observed with a homoallylic *tert*-butyl group (entry 11). This diastereoselective ratio was increased only slightly to 86:14 if the methyl ester was replaced with a *tert*-butyl ester albeit with a reduced yield (entry 12).

While several mechanisms are possible,²⁵ 3*H*-indole formation is attributed to the tandem electrocyclization–[1,2] migration outlined in Scheme 2. Rhodium-catalyzed decomposition of aryl azide 9a produces rhodium nitrene 13,^{17d,26} which undergoes a 4π -electron-5-atom electrocyclization. The resulting *N*-heterocycle 14 contains a benzylic carbocation, which can undergo ring contraction to produce spirocycle 15 or a [1,2] ester shift to produce 16.^{10d-f} We believe that ester migration is favored because the buildup of positive charge in the transition state leading to 15 will be destabilized by the ester group.^{10f} Double crossover experiments revealed that the ester does not escape the solvent sheath during the shift.²² Release of the rhodium carboxylate affords 3*H*-indole 10a.

If this catalytic cycle were operating, we anticipated that the 3H-indole product might be controlled by the identity of the β -

Scheme 2. Possible Mechanism for $Rh_2(II)$ -Catalyzed 3H-Indole Formation

substituent (Scheme 2). Our analysis of the two possible [1,2] migration reactive intermediates (or transition states leading to them) indicated that ring contraction might be favored if the ester substituent was replaced with one that would stabilize **15** in comparison to **16**. We anticipated that incorporation of an electron-donating group (EDG) at the β -position of styryl azide **17** would trigger a [1,2] alkyl shift in **18** to enable formation of *3H*-indoles **19**.

To test this assertion, styryl azides bearing β -alkoxy substituents were targeted to potentially access oxindoles (Scheme 3). These substrates are easily synthesized by cross-

coupling 2-azidophenyl boronate ester 7 with vinyl triflate **20**, which was synthesized following a report by Wood et al.²⁷ Exposure of the resulting styryl azide to reaction conditions produced 3*H*-indole **19**, which was converted to oxindole **21** upon acid-mediated hydrolysis in 67% yield from **21**. The identity of the migrating aryl group could be modified to *para*-tolyl to afford oxindole **21b** in 65% yield. Changing the β -alkoxy substituent to *para*-nitrophenol not only facilitated synthesis of triflate **20c** and styryl azide **17c** but also improved the yield of 3*H*-indole to 83%. These 3,3-diaryl oxindoles are common motifs present in anticancer agents, which inhibit translation initiation.^{4b-e}

In conclusion, we have developed a new method to access 3H-indoles or oxindoles from aryl azides through an electrocyclization—[1,2] shift reaction of the rhodium *N*-aryl nitrene. The step economy of our process is enhanced by the accessibility of our substrates from cross-coupling 2-azidoarylboronates with the vinyl triflate derived from β -ketoesters. Currently, we are working toward understanding the mechanism of our reaction in order to control the selectivity of the migration step.

ASSOCIATED CONTENT

Supporting Information

Complete experimental procedures, spectroscopic and analytical data for the products. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: tgd@uic.edu.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We are grateful to the National Science Foundation (CHE-126563) and the Office of the Vice Chancellor of Research at the University of Illinois at Chicago for their generous support. We also thank Mr. Furong Sun for mass spectrometry data.

REFERENCES

 (a) Cox, E. D.; Cook, J. M. Chem. Rev. 1995, 95, 1797.
 (b) Czarwinski, K. M.; Cook, J. M. Advances in Heterocyclic Natural Products Synthesis Vol. III 1996, 217. (c) Czarnocki, Z.; Siwicka, A.; Szawkalo, J. Curr. Org. Synth. 2005, 2, 301. (d) Maresh, J. J.; Giddings, L.-A.; Friedrich, A.; Loris, E. A.; Panjikar, S.; Trout, B. L.; Stockigt, J.; Peters, B.; O'Connor, S. E. J. Am. Chem. Soc. 2007, 130, 710. (e) Luk, L. Y. P.; Bunn, S.; Liscombe, D. K.; Facchini, P. J.; Tanner, M. E. Biochemistry 2007, 46, 10153. (f) Edwankar, C. R.; Edwankar, R. V.; Namjoshi, O. A.; Rallapappi, S. K.; Yang, J.; Cook, J. M. Curr. Opin. Drug Discovery Dev. 2009, 12, 752.

(2) (a) Padwa, A.; Bur, S. K. Tetrahedron 2007, 63, 5341. (b) Zhang, M. Adv. Synth. Catal. 2009, 351, 2243. (c) Padwa, A. J. Org. Chem. 2009, 74, 6421. (d) Stokes, B. J.; Driver, T. G. Eur. J. Org. Chem. 2011, 2011, 4071. (e) Taber, D. F.; Tirunahari, P. K. Tetrahedron 2011, 67, 7195. (f) Wu, X.-F.; Neumann, H.; Beller, M. Chem. Rev. 2012, 113, 1. (g) Szostak, M.; Aubé, J. Chem. Rev. 2013, 113, 5701. (h) Gulevich, A. V.; Dudnik, A. S.; Chernyak, N.; Gevorgyan, V. Chem. Rev. 2013, 113, 3084. (i) Xu, X.; Doyle, M. P. Acc. Chem. Res. 2014, 47, 1396.

(3) For nonoxygenated 3*H*-indoles, see: (a) Steele, J. C. P.; Veitch, N. C.; Kite, G. C.; Simmonds, M. S. J.; Warhurst, D. C. *J. Nat. Prod.* **2002**, 65, 85. (b) Prakash, C. V. S.; Sprague, S.; Schilling, J. K.; Kingston, D. G. *J. Nat. Prod.* **2003**, 66, 528. (c) Lim, K.-H.; Hiraku, O.; Komiyama, K.; Koyano, T.; Hayashi, M.; Kam, T.-S. *J. Nat. Prod.* **2007**, 70, 1302. (d) Zhang, W.; Liu, Z.; Li, S.; Yang, T.; Zhang, Q.; Ma, L.; Tian, X.; Zhang, H.; Huang, C.; Zhang, S.; Ju, J.; Shen, Y.; Zhang, C. *Org. Lett.* **2012**, *14*, 3364. (e) Li, L.-M.; Yang, T.; Liu, Y.; Liu, J.; Li, M.-H.; Wang, Y.-T.; Yang, S.-X.; Zou, Q.; Li, G.-Y. *Org. Lett.* **2012**, *14*, 3450. (f) Fu, Y.; Di, Y.; He, H.; Li, S.; Zhang, Y.; Hao, X. J. Nat. Prod. **2014**, *77*, 57.

(4) For oxindoles, see: (a) Aktas, B. H.; Halperin, J. A.; Wagner, G.; Chorev, M. Annu. Rep. Med. Chem. 2011, 189. (b) Chen, L.; Aktas, B. H.; Wang, Y.; He, X.; Sahoo, R.; Zhang, N.; Denoyelle, S.; Kabha, E.; Yang, H.; Freedman, R. Y.; Supko, J. G.; Chorev, M.; Wagner, G.; Halperin, J. A. Oncotarget 2012, 3, 869. (c) Natarajan, A.; Fan, Y.-H.; Chen, H.; Guo, Y.; Iyasere, J.; Harbinski, F.; Christ, W. J.; Aktas, H.; Halperin, J. A. J. Med. Chem. 2004, 47, 1882. (d) Natarajan, A.; Guo, Y.; Harbinski, F.; Fan, Y.-H.; Chen, H.; Luus, L.; Diercks, J.; Aktas, H.; Chorev, M.; Halperin, J. A. J. Med. Chem. 2004, 47, 4979. (e) Ding, K.; Lu, Y.; Nikolovska-Coleska, Z.; Wang, G.; Qiu, S.; Shangary, S.; Gao, W.; Qin, D.; Stuckey, J.; Krajewski, K.; Roller, P. P.; Wang, S. J. Med. Chem. 2006, 49, 3432.

(5) Compare: (a) (Review) Marti, C.; Carreira, E. M. Eur. J. Org. Chem. 2003, 2209. (b) Alper, P. B.; Meyers, C.; Lerchner, A.; Siegel, D. R.; Carreira, E. M. Angew. Chem., Int. Ed. 1999, 38, 3186.
(c) Fischer, C.; Meyers, C.; Carreira, E. M. Helv. Chim. Acta 2000, 83, 1175. (d) Feldman, K. S.; Vidulova, D. B. Org. Lett. 2004, 6, 1869.

Organic Letters

(e) Franz, A. K.; Dreyfuss, P. D.; Schreiber, S. L. J. Am. Chem. Soc. **2007**, 129, 1020. (f) White, J. D.; Li, Y.; Ihle, D. C. J. Org. Chem. **2010**, 75, 3569.

(6) Compare: (a) Zhang, M. Adv. Synth. Catal. 2009, 351, 2243.
(b) Trost, B. M.; Brennan, M. K. Org. Lett. 2006, 8, 2027. (c) Altman, R. A.; Hyde, A. M.; Huang, X.; Buchwald, S. L. J. Am. Chem. Soc. 2008, 130, 9613. (d) Taylor, A. M.; Altman, R. A.; Buchwald, S. L. J. Am. Chem. Soc. 2009, 131, 9900. (e) Würtz, S.; Lohre, C.; Fröhlich, R.; Bergander, K.; Glorius, F. J. Am. Chem. Soc. 2009, 131, 8344. (f) Hande, S. M.; Nakajima, M.; Kamisaki, H.; Tsukano, C.; Takemoto, Y. Org. Lett. 2011, 13, 1828. (g) Allous, I.; Comesse, S.; Sanselme, M.; Daïch, A. Eur. J. Org. Chem. 2011, 2011, 5303. (h) Cao, T.; Deitch, J.; Linton, E. C.; Kozlowski, M. C. Angew. Chem., Int. Ed. 2012, 51, 2448. (i) Wu, L.; Falivene, L.; Drinkel, E.; Grant, S.; Linden, A.; Cavallo, L.; Dorta, R. Angew. Chem., Int. Ed. 2012, 51, 2870. (j) Ren, L.; Lian, X.-L.; Gong, L.-Z. Chem.—Eur. J. 2013, 19, 3315.

(7) For some recent 3H-indole methods, see: (a) Kimura, M.; Futamata, M.; Mukai, R.; Tamaru, Y. J. Am. Chem. Soc. 2005, 127, 4592. (b) Trost, B. M.; Quancard, J. J. Am. Chem. Soc. 2006, 128, 6314.
(c) Boyarskikh, V.; Nyong, A.; Rainier, J. D. Angew. Chem., Int. Ed. 2008, 47, 5374. (d) He, Z.; Li, H.; Li, Z. J. Org. Chem. 2010, 75, 4636.
(e) Sajjadifar, S.; Vahedi, H.; Massoudi, A.; Louie, O. Molecules 2010, 15, 2491. (f) Kolundzic, F.; Noshi, M. N.; Tjandra, M.; Movassaghi, M.; Miller, S. J. J. Am. Chem. Soc. 2011, 133, 9104. (g) Zhou, F.; Driver, T. G. Org. Lett. 2014, 16, 2916.

(8) (a) Britten, A. Z.; Bardsley, W. G.; Hill, C. M. Tetrahedron 1971, 27, 5631.
(b) Rosenmund, P.; Gektidis, S.; Brill, H.; Kalbe, R. Tetrahedron Lett. 1989, 30, 61.
(c) Boal, B. W.; Schammel, A. W.; Garg, N. K. Org. Lett. 2009, 11, 3458.
(d) Schammel, A. W.; Boal, B. W.; Zu, L.; Mesganaw, T.; Garg, N. K. Tetrahedron 2010, 66, 4687.
(e) Schammel, A. W.; Chiou, G.; Garg, N. K. J. Org. Chem. 2011, 77, 725.
(f) Schammel, A. W.; Chiou, G.; Garg, N. K. Org. Lett. 2012, 14, 4556.

(9) For reviews, see: (a) Overman, L. E.; Pennington, L. D. J. Org. Chem. 2003, 68, 7143. (b) Nicolaou, K. C.; Edmonds, D. J.; Bulger, P. G. Angew. Chem., Int. Ed. 2006, 45, 7134. (c) Crone, B.; Kirsch, S. F. Chem.—Eur. J. 2008, 14, 3514. (d) Padwa, A.; Bur, S. K. Tetrahedron 2007, 63, 5341. (e) Padwa, A. Prog. Heterocycl. Chem. 2009, 20, 20.

(10) (a) (Review) Grant, T. N.; Rieder, C. J.; West, F. G. Chem. Commun. 2009, 5676. (b) Bender, J. A.; Blize, A. E.; Browder, C. C.; Giese, S.; West, F. G. J. Org. Chem. 1998, 63, 2430. (c) Bender, J. A.; Arif, A. M.; West, F. G. J. Am. Chem. Soc. 1999, 121, 7443. (d) Huang, J.; Lebœuf, D.; Frontier, A. J. J. Am. Chem. Soc. 2011, 133, 6307.
(e) Lebœuf, D.; Huang, J.; Gandon, V.; Frontier, A. J. Angew. Chem., Int. Ed. 2011, 50, 10981. (f) Lebœuf, D.; Gandon, V.; Ciesielski, J.; Frontier, A. J. J. Am. Chem. Soc. 2012, 134, 6296.

(11) (a) Sun, K.; Liu, S.; Bec, P. M.; Driver, T. G. Angew. Chem., Int. Ed. 2011, 50, 1702. (b) Stokes, B. J.; Liu, S.; Driver, T. G. J. Am. Chem. Soc. 2011, 133, 4702. (c) Kong, C.; Jana, N.; Driver, T. G. Org. Lett. 2013, 15, 824. (d) Jones, C.; Nguyen, Q.; Driver, T. G. Angew. Chem., Int. Ed. 2014, 53, 785.

(12) Jana, N.; Nguyen, Q.; Driver, T. G. J. Org. Chem. **2014**, 79, 2781. (13) 2-Azidophenylboronic acid pinacolate ester was synthesized from commercially available 2-aminophenylboronate using t-BuNO and Me₃SiN₃ as reported by Moses et al. See: (a) Barral, K.; Moorhouse, A. D.; Moses, J. E. Org. Lett. **2007**, 9, 1809. (b) Zhang, F.; Moses, J. E. Org. Lett. **2009**, 11, 1587.

(14) (a) Prelog, V.; Ruzicka, L.; Barman, P.; Frenkiel, L. Helv. Chim. Acta 1948, 31, 92. (b) Dowd, P.; Choo, S. C. Tetrahedron Lett. 1989, 30, 6129. (c) Han, X.; Wang, X.; Pei, T.; Widenhoefer, R. A. Chem.— Eur. J. 2004, 10, 6333. (d) Liu, C.; Wang, X.; Pei, T.; Widenhoefer, R. A. Chem.—Eur. J. 2004, 10, 6343. (e) Lachia, M.; Dénès, F.; Beaufils, F.; Renaud, P. Org. Lett. 2005, 7, 4103. (f) Capuzzi, M.; Perdicchia, D.; Jørgensen, K. A. Chem.—Eur. J. 2008, 14, 128. (g) Palomo, C.; Oiarbide, M.; García, J. M.; Bañuelos, P.; Odriozola, J. M.; Razkin, J.; Linden, A. Org. Lett. 2008, 10, 2637. (h) Chai, Y.; Wan, Z.-L.; Wang, B.; Guo, H.-Y.; Liu, M.-L. Eur. J. Med. Chem. 2009, 44, 4063. (i) Boddaert, T.; Coquerel, Y.; Rodriguez, J. Eur. J. Org. Chem. 2011, 2011, 5061. (15) Most of the vinyl triflates used in the synthesis of aryl azides **9** have been previously reported. See: (a) Piers, E.; Tse, H. L. A. *Can. J. Chem.* **1993**, *71*, 983. (b) Petersen, M. D.; Boye, S. V.; Nielsen, E. H.; Willumsen, J.; Sinning, S.; Wiborg, O.; Bols, M. *Bioorg. Med. Chem.* **2007**, *15*, 4159. (c) Yoshimitsu, T.; Arano, Y.; Kaji, T.; Ino, T.; Nagaoka, H.; Tanaka, H. *Heterocycles* **2009**, *77*, 179. (d) Micheli, F.; Cavanni, P.; Andreotti, D.; Arban, R.; Benedetti, R.; Bertani, B.; Bettati, M.; Bettelini, L.; Bonanomi, G.; Braggio, S.; Carletti, R.; Checchia, A.; Corsi, M.; Fazzolari, E.; Fontana, S.; Marchioro, C.; Merlo-Pich, E.; Negri, M.; Oliosi, B.; Ratti, E.; Read, K. D.; Roscic, M.; Sartori, I.; Spada, S.; Tedesco, G.; Tarsi, L.; Terreni, S.; Visentini, F.; Zocchi, A.; Zonzini, L.; Di Fabio, R. J. Med. Chem. **2010**, *53*, 4989.

(16) (a) Bach, T.; Körber, C. Tetrahedron Lett. 1998, 39, 5015.
(b) Bach, T.; Körber, C. J. Org. Chem. 2000, 65, 2358. (c) Bacci, J. P.; Greenman, K. L.; Van Vranken, D. L. J. Org. Chem. 2003, 68, 4955.
(d) King, E. R.; Hennessy, E. T.; Betley, T. A. J. Am. Chem. Soc. 2011, 133, 4917. (e) Hennessy, E. T.; Betley, T. A. Science 2013, 340, 591.
(f) Nguyen, Q.; Nguyen, T.; Driver, T. G. J. Am. Chem. Soc. 2013, 135, 620.

(17) (a) Ruppel, J. V.; Jones, J. E.; Huff, C. A.; Kamble, R. M.; Chen, Y.; Zhang, X. P. Org. Lett. **2008**, 10, 1995. (b) Jones, J. E.; Ruppel, J. V.; Gao, G.-Y.; Moore, T. M.; Zhang, X. P. J. Org. Chem. **2008**, 73, 7260. (c) Lu, H.; Subbarayan, V.; Tao, J.; Zhang, X. P. Organometallics **2009**, 29, 389. (d) Lyaskovskyy, V.; Suarez, A. I. O.; Lu, H.; Jiang, H.; Zhang, X. P.; de Bruin, B. J. Am. Chem. Soc. **2011**, 133, 12264.

(18) (a) Milczek, E.; Boudet, N.; Blakey, S. Angew. Chem., Int. Ed. 2008, 47, 6825. (b) Shou, W. G.; Li, J.; Guo, T.; Lin, Z.; Jia, G. Organometallics 2009, 28, 6847. (c) Dong, H.; Latka, R. T.; Driver, T. G. Org. Lett. 2011, 13, 2726.

(19) (a) Sun, K.; Sachwani, R.; Richert, K. J.; Driver, T. G. Org. Lett. 2009, 11, 3598. (b) Nishioka, Y.; Uchida, T.; Katsuki, T. Angew. Chem., Int. Ed. 2013, 52, 1739. (c) Ryu, J.; Kwak, J.; Shin, K.; Lee, D.; Chang, S. J. Am. Chem. Soc. 2013, 135, 12861.

(20) Espino, C. G.; Fiori, K. W.; Kim, M.; Du Bois, J. J. Am. Chem. Soc. 2004, 126, 15378.

(21) Zalatan, D. N.; Du Bois, J. J. Am. Chem. Soc. 2009, 131, 7558.

(22) Refer to the Supporting Information for more details.

(23) General Procedure for 3*H*-Indole Formation. To a mixture of styryl azide 9 and $Rh_2(esp)_2$ (5 mol %) was added toluene (0.1 M). The resulting mixture was heated at 140 °C. After 16 h, the mixture was cooled to rt, diluted with CH_2Cl_2 , and concentrated *in vacuo*. Purification of the residue by MPLC (3:97–30:70 EtOAc/hexanes) using alumina afforded 3*H*-indole 10.

(24) (a) Phillips, R. R. Org. React. 1959, 10, 1143. (b) Robinson, B. Chem. Rev. 1963, 63, 373.

(25) (a) Kornecki, K. P.; Berry, J. F. Chem.—Eur. J. 2011, 17, 5827.
(b) Perry, R. H.; Cahill, T. J.; Roizen, J. L.; Du Bois, J.; Zare, R. N. Proc. Natl. Acad. Sci. U.S.A. 2012, 109, 18295.

(26) For computational investigations of metal nitrene formation from azides, see: (a) Cundari, T. R.; Morello, G. R. J. Org. Chem. 2009, 74, 5711. (b) Long, A. K. M.; Timmer, G. H.; Pap, J. S.; Snyder, J. L.; Yu, R. P.; Berry, J. F. J. Am. Chem. Soc. 2011, 133, 13138. (c) Musaev, D. G.; Blakey, S. B. Organometallics 2012, 31, 4950.

(27) Wood, J. L.; Moniz, G. A. Org. Lett. 1999, 1, 371.